Biotechnology - Online Article

"Biotechnology means any technological application that uses biological systems, living organisms, or derivatives thereof, to make or modify products or processes for specific use."

Application of indigenous and/or scientific knowledge to the management of (parts of) microorganisms, or of cells and tissues of higher organisms, so that these supply goods and services of use to human beings.

Biotechnology combines disciplines like genetics, molecular biology, biochemistry, embryology and cell biology, which are in turn linked to practical disciplines like chemical engineering, information technology, and robotics.

Bioengineering is the science upon which all Biotechnological applications are based. With the development of new approaches and modern techniques, traditional biotechnology industries are also acquiring new horizons enabling them to improve the quality of their products and increase the productivity of their systems.



Early cultures understood the importance of using natural processes to breakdown waste products into inert forms. The most practical use of biotechnology, which is still present today, is the cultivation of plants to produce food suitable to humans. The processes and methods of agriculture have been refined by other mechanical and biological sciences since its inception. Through early biotechnology farmers were able to select the best suited and highest-yield crops to produce enough food to support a growing population.

Other uses of biotechnology were required as crops and fields became increasingly large and difficult to maintain. Specific organisms and organism byproducts were used to fertilize, restore nitrogen, and control pests. Throughout the use of agriculture farmers have inadvertently altered the genetics of their crops through introducing them to new environments, breeding them with other plants, and by using artificial selection.

In modern times some plants have been genetically modified to produce specific nutritional values or to be economical. The process of Ethanol fermentation was one of the first forms of biotechnology. Cultures such as those in Mesopotamia, Egypt, and Iran developed the process of brewing which consisted of combining malted grains with specific yeasts to produce alcoholic beverages. In this process the carbohydrates in the grains were broken down into alcohols such as ethanol. Later other cultures produced the process of Lactic acid fermentation which allowed the fermentation and preservation of other forms of food. Fermentation was also used in this time period to produce leavened bread. Although the process of fermentation was not fully understood until Louis Pasteur's work in 1857, it is still the first use of biotechnology to convert a food source into another form.

Combinations of plants and other organisms were used as medications in many early civilizations. Since as early as 200 BC people began to use disabled or minute amounts of infectious agents to immunize themselves against infections. These and similar processes have been refined in modern medicine and have lead to many developments such as antibiotics, vaccines, and other methods of fighting sickness.

In the early twentieth century scientists gained a greater understanding of biochemical and genetic mechanisms and began to explore ways of manufacturing specific products using microbiological techniques. In 1917, Chaim Weizmann first used a pure culture in an industrial process, that of manufacturing corn starch using Clostridium acetobutylicum to produce acetone, which the United Kingdom desperately needed to manufacture explosives during World War I.

The field of modern biotechnology is thought to have largely began on June 16, 1980, when the United States Supreme Court ruled that a genetically-modified microorganism could be patented in the case of Diamond v. Chakrabarty. Indian-born Ananda Chakrabarty, working for General Electric, had developed a bacterium (derived from the Pseudomonas genus) capable of breaking down crude oil, which he proposed to use in treating oil spills.

A university in Florida is now studying ways to break down tooth decay. They altered the bacteria in the tooth called Streptococcus mutans by stripping it down so it could not produce lactic acid.


Biotechnology has applications in four major industrial areas, including health care, crop production and agriculture, non food uses of crops (e.g. biodegradable plastics, vegetable oil, biofuels), and environmental uses. Biotechnology is also used to recycle, treat waste, clean up sites contaminated by industrial activities (bioremediation), and produce biological weapons.

Red Biotechnology

It is applied to medical processes. Some examples are the designing of organisms to produce antibiotics, and the engineering of genetic cures through genomic manipulation.

Biotechnical methods are now used to produce many proteins for pharmaceutical and other specialized purposes. A harmless strain of Escherichia coli bacteria, given a copy of the gene for human insulin, can make insulin. As these genetically modified (GM) bacterial cells age, they produce human insulin, which can be purified and used to treat diabetes in humans. Microorganisms can also be modified to produce digestive enzymes. In the future, these microorganisms could be colonized in the intestinal tract of persons with digestive enzyme insufficiencies. Products of modern biotechnology include artificial blood vessels from collagen tubes coated with a layer of the anticoagulant heparin.

DNA Fingerprinting


DNA fingerprinting is the process of cross matching two strands of DNA. In criminal investigations, DNA from samples of hair, bodily fluids or skin at a crime scene are compared with those obtained from the suspects. In practice, it has become one of the most powerful and widely known applications of biotechnology today. Another process, polymerase chain reaction (PCR), is also being used to more quickly and accurately identify the presence of infections such as AIDS, Lyme disease and Chlamydia.

Paternity Determination


Paternity determination is possible because a child's DNA pattern is inherited, half from the mother and half from the father. To establish paternity, DNA fingerprints of the mother, child and the alleged father are compared. The matching sequences of the mother and the child are eliminated from the child's DNA fingerprint; what remains comes from the biological father. These segments are then compared for a match with the DNA fingerprint of the alleged father.

DNA Testing


DNA testing is also used on human fossils to determine how closely related fossil samples are from different geographic locations and geologic areas. The results shed light on the history of human evolution and the manner in which human ancestors settled different parts of the world.

Gene Therapy

Gene therapy may be used for treating, or even curing, genetic and acquired diseases like cancer and AIDS by using normal genes to supplement or replace defective genes or to bolster a normal function such as immunity. It can be used to target somatic (i.e., body) or germ (i.e., egg and sperm) cells. In somatic gene therapy, the genome of the recipient is changed, but this change is not passed along to the next generation. In contrast, in germline gene therapy, the egg and sperm cells of the parents are changed for the purpose of passing on the changes to their offspring.

There are basically two ways of implementing a gene therapy treatment:

  1. Ex vivo, which means "outside the body" - Cells from the patient's blood or bone marrow are removed and grown in the laboratory. They are then exposed to the virus carrying the desired gene. The virus enters the cells, and the desired gene becomes part of the DNA of the cells. The cells are allowed to grow in the laboratory before being returned to the patient by injection into a vein.
  2. In vivo, which means "inside the body" - No cells are removed from the patient's body. Instead, vectors are used to deliver the desired gene to cells in the patient's body.

Currently, the use of gene therapy is limited. Somatic gene therapy is primarily at the experimental stage. Germline therapy is the subject of much discussion but it is not being actively investigated in larger animals and human beings.

Human Genome Project


The Human Genome Project is an initiative of the U.S. Department of Energy ("DOE") that aims to generate a high-quality reference sequence for the entire human genome and identify all the human genes. In 1986, the DOE announced its Human Genome Initiative. Shortly thereafter, the DOE and National Institutes of Health developed a plan for a joint Human Genome Project ("HGP"), which officially began in 1990.

In June 2000, scientists announced the generation of a working draft sequence of the entire human genome. The draft provides a road map to an estimated 90% of genes on every human chromosome. Already it has enabled gene hunters to pinpoint genes associated with more than 30 disorders.

Human Cloning

Human cloning is one of the techniques of modern biotechnology. It involves the removal of the nucleus from one cell and its placement in an unfertilized egg cell whose nucleus has either been deactivated or removed.

There are two types of cloning:

  1. Reproductive cloning. After a few divisions, the egg cell is placed into a uterus where it is allowed to develop into a fetus that is genetically identical to the donor of the original nucleus.
  2. Therapeutic cloning. The egg is placed into a Petri dish where it develops into embryonic stem cells, which have shown potentials for treating several ailments.

In February 1997, cloning became the focus of media attention when Ian Wilmut and his colleagues at the Roslin Institute announced the successful cloning of a sheep, named Dolly, from the mammary glands of an adult female. The cloning of Dolly made it apparent to many that the techniques used to produce her could someday be used to clone human beings. This stirred a lot of controversy because of its ethical implications.

White Biotechnology

White biotechnology also known as grey biotechnology is biotechnology applied to industrial processes. An example is the designing of an organism to produce a useful chemical. Another example is the using of enzymes as industrial catalysts to either produce valuable chemicals or destroy hazardous/polluting chemicals. White biotechnology tends to consume less in resources than traditional processes used to produce industrial goods.

Industrial Biotechnology


Industrial biotechnology applies the techniques of modern molecular biology to improve the efficiency and reduce the environmental impacts of industrial processes like textile, paper and pulp, and chemical manufacturing. For example, industrial biotechnology companies develop biocatalysts, such as enzymes, to synthesize chemicals. Enzymes are proteins produced by all organisms. Using biotechnology, the desired enzyme can be manufactured in commercial quantities.

Commodity Chemicals

Commodity chemicals (e.g., polymer-grade acrylamide) and specialty chemicals can be produced using biotech applications. Traditional chemical synthesis involves large amounts of energy and often-undesirable products, such as HCl. Using biocatalysts, the same chemicals can be produced more economically and more environmentally friendly. An example would be the substitution of protease in detergents for other cleaning compounds. Detergent proteases, which remove protein impurities, are essential components of modern detergents. They are used to break down protein, starch, and fatty acids present on items being washed. Protease production results in a biomass that in turn yields a useful byproduct- an organic fertilizer. Biotechnology is also used in the textile industry for the finishing of fabrics and garments. Biotechnology also produces biotech-derived cotton that is warmer, stronger, has improved dye uptake and retention, enhanced absorbency, and wrinkle- and shrink-resistance.

Some agricultural crops, such as corn, can be used in place of petroleum to produce chemicals. The crop's sugar can be fermented to acid, which can be then used as an intermediate to produce other chemical feedstocks for various products. It has been projected that 30% of the world's chemical and fuel needs could be supplied by such renewable resources in the first half of the next century. It has been demonstrated, at test scale, that biopulping reduces the electrical energy required for wood pulping process by 30%.

Green Biotechnology

Green biotechnology is biotechnology applied to agricultural processes. An example is the designing of transgenic plants to grow under specific environmental conditions or in the presence (or absence) of certain agricultural chemicals. One hope is that green biotechnology might produce more environmentally friendly solutions than traditional industrial agriculture. An example of this is the engineering of a plant to express a pesticide, thereby eliminating the need for external application of pesticides. An example of this would be Bt corn. Whether or not green biotechnology products such as this are ultimately more environmentally friendly is a topic of considerable debate.

Environmental Biotechnology

Environmental biotechnology is the used in waste treatment and pollution prevention. Environmental biotechnology can more efficiently clean up many wastes than conventional methods and greatly reduce our dependence on methods for land-based disposal.

Every organism ingests nutrients to live and produces by-products as a result. Different organisms need different types of nutrients. Some bacteria thrive on the chemical components of waste products. Environmental engineers use bioremediation, the broadest application of environmental biotechnology, in two basic ways. They introduce nutrients to stimulate the activity of bacteria already present in the soil at a waste site, or add new bacteria to the soil. The bacteria digest the waste at the site and turn it into harmless byproducts. After the bacteria consume the waste materials, they die off or return to their normal population levels in the environment.


Bioremediation, is an area of increasing interest. Through application of biotechnical methods, enzyme bioreactors are being developed that will pretreat some industrial waste and food waste components and allow their removal through the sewage system rather than through solid waste disposal mechanisms. Waste can also be converted to biofuel to run generators. Microbes can be induced to produce enzymes needed to convert plant and vegetable materials into building blocks for biodegradable plastics. In some cases, the byproducts of the pollution-fighting microorganisms are themselves useful. For example, methane can be derived from a form of bacteria that degrades sulfur liquor, a waste product of paper manufacturing. This methane can then be used as a fuel or in other industrial processes.

There are many applications of biotechnology in agriculture.

One is improved yield from crops. Using the techniques of modern biotechnology, one or two genes may be transferred to a highly developed crop variety to impart a new character that would increase its yield. However, while increase in crop yield is the most obvious application of modern biotechnology in agriculture, it is also the most difficult one. Current genetic engineering techniques work best for effects that are controlled by a single gene. Many of the genetic characteristics associated with yield (e.g., enhanced growth) are controlled by a large number of genes, each of which has a minimal effect on the overall yield. There is, therefore, much scientific work to be done in this area.

Another is the reduced vulnerability of crops to environmental stresses. Crops containing genes that will enable them to withstand biotic and abiotic stresses may be developed. For example, drought and excessively salty soil are the two most important limiting factors in crop productivity. Biotechnologists are studying plants that can cope with these extreme conditions in the hope of finding the genes that enable them to do so and eventually transferring these genes to the more desirable crops. One of the latest developments is the identification of a plant gene, At-DBF2, from thale cress, a tiny weed that is often used for plant research because it is very easy to grow and its genetic code is well mapped out. When this gene was inserted into tomato and tobacco cells, the cells were able to withstand environmental stresses like salt, drought, cold and heat, far more than ordinary cells. If these preliminary results prove successful in larger trials, then At-DBF2 genes can help in engineering crops that can better withstand harsh environments.

Researchers have also created transgenic rice plants that are resistant to rice yellow mottle virus (RYMV). In Africa, this virus destroys majority of the rice crops and makes the surviving plants more susceptible to fungal infections.

Increased nutritional qualities of food crops. Proteins in foods may be modified to increase their nutritional qualities. Proteins in legumes and cereals may be transformed to provide the amino acids needed by human beings for a balanced diet. A good example is the work of Professors Ingo Potrykus and Peter Beyer on the so-called Goldenrice™.

Improved taste, texture or appearance of food. Modern biotechnology can be used to slow down the process of spoilage so that fruit can ripen longer on the plant and then be transported to the consumer with a still reasonable shelf life. This improves the taste, texture and appearance of the fruit. More importantly, it could expand the market for farmers in developing countries due to the reduction in spoilage.

The first genetically modified food product was a tomato which was transformed to delay its ripening. Researchers in Indonesia, Malaysia, Thailand, Philippines and Vietnam are currently working on delayed-ripening papaya in collaboration with the University of Nottingham and Zeneca.

Reduced dependence on fertilizers, pesticides and other agrochemicals. Most of the current commercial applications of modern biotechnology in agriculture are on reducing the dependence of farmers on agrochemicals. For example, Bacillus thuringiensis (Bt) is a soil bacterium that produces a protein with insecticidal qualities. Traditionally, a fermentation process has been used to produce an insecticidal spray from these bacteria. In this form, the Bt toxin occurs as an inactive protoxin, which requires digestion by an insect to be effective. There are several Bt toxins and each one is specific to certain target insects. Crop plants have now been engineered to contain and express the genes for Bt toxin, which they produce in its active form. When a susceptible insect ingests the transgenic crop cultivar expressing the Bt protein, it stops feeding and soon thereafter dies as a result of the Bt toxin binding to its gut wall. Bt corn is now commercially available in a number of countries to control corn borer (a lepidopteran insect), which is otherwise controlled by spraying (a more difficult process).

Crops have also been genetically engineered to acquire tolerance to broad-spectrum herbicide. The lack of cost-effective herbicides with broad-spectrum activity and no crop injury was a consistent limitation in crop weed management. Multiple applications of numerous herbicides were routinely used to control a wide range of weed species detrimental to agronomic crops. Weed management tended to rely on preemergence - that is, herbicide applications were sprayed in response to expected weed infestations rather than in response to actual weeds present. Mechanical cultivation and hand weeding were often necessary to control weeds not controlled by herbicide applications. The introduction of herbicide tolerant crops has the potential of reducing the number of herbicide active ingredients used for weed management, reducing the number of herbicide applications made during a season, and increasing yield due to improved weed management and less crop injury. Transgenic crops that express tolerance to glyphosphate, glufosinate and bromoxynil have been developed. These herbicides can now be sprayed on transgenic crops without inflicting damage on the crops while killing nearby weeds.

Production of novel substances in crop plants. Modern biotechnology is increasingly being applied for novel uses other than food. For example, oilseed is at present used mainly for margarine and other food oils, but it can be modified to produce fatty acids for detergents, substitute fuels and petrochemicals. Banana trees and tomato plants have also been genetically engineered to produce vaccines in their fruit. If future clinical trials prove successful, the advantages of edible vaccines would be enormous, especially for developing countries. The transgenic plants may be grown locally and cheaply. Homegrown vaccines would also avoid logistical and economic problems posed by having to transport traditional preparations over long distances and keeping them cold while in transit. And since they are edible, they will not need syringes, which are not only an additional expense in the traditional vaccine preparations but also a source of infections if contaminated.

There is another, darker side, many people say, to the agricultural biotechnology issue however. It includes increased herbicide usage and resultant herbicide resistance, "super weeds", residues on and in food crops, genetic contamination of non-GM crops which hurt organic and conventional farmers, damage to wildlife from glyphosate, mass suicides in India, corruption, rampant monopolism etc.

The term Blue Biotechnology has also been used to describe the marine and aquatic applications of biotechnology, but its use is relatively rare. The novel biotechnology revolves around harnessing the potential of certain bioluminescent micro-organisms that produce luminescence in sea water at night. According to researchers, they can visually identify toxin levels in soil or water within minutes. In this process, modified bacteria are mixed with a sample to produce a brightblue luminous glow to indicate health. A dull glow indicates the presence and level of toxins.


Bioinformatics is an interdisciplinary field which addresses biological problems using computational techniques, and makes the rapid organization and analysis of biological data possible. The field may also be referred to as computational biology, and can be defined as, "conceptualizing biology in terms of molecules and then applying informatics techniques to understand and organize the information associated with these molecules, on a large scale." Bioinformatics plays a key role in various areas, such as functional genomics, structural genomics, and proteomics, and forms a key component in the biotechnology and pharmaceutical sector.

Biotechnology Glossary

BIOMASS: Material produced by or remaining after the death of organisms (e.g., bacteria, plants, and animals).

BIOTECHNOLOGY: A collection of technologies that use living cells and/or biological molecules to solve problems and make useful products.

BIOREMEDIATION: The use of organisms, usually microorganisms, to break down pollutants in soil, air or groundwater.

DNA (Deoxyribonucleic acid): The chemical molecule that is the basic genetic material found in all cells. Each unit of DNA is made of nucleotides: adenine (A), guanine (G), thymine (T) and cytosine (C), as well as a sugar and a phosphate. DNA is inherited. DNA is a very long, thin molecule, it is packaged into units called chromosomes.

ENZYMES: A protein that accelerates the rate of chemical reactions. Enzymes are catalysts that promote reactions repeatedly, without being damaged by the reactions.

GENE: A unit of hereditary information. A gene is a section of a DNA molecule that specifies the production of a particular protein.

GENETIC ENGINEERING: The technique of removing, modifying or adding genes to a DNA molecule in order to change the information it contains. By changing this information, genetic engineering changes the type or amount of proteins an organism is capable of producing.

GENETICALLY MODIFIED ORGANISM: An organism that has been modified, or transformed, using modern techniques of genetic exchange is commonly referred to as a genetically-modified organism (GMO).

GENE THERAPY: Altering DNA within cells in a living organism to treat or cure a disease. It is one of the most promising areas of biotechnology research. New genetic therapies are being developed to treat diseases such as cystic fibrosis, AIDS and cancer.

GENOME: The complete set of an organisms genetic information. In humans this corresponds to twenty-three pairs of chromosomes.

MOLECULAR BIOLOGY: A branch of biology concerned with studying the chemical structures and processes of biological phenomena at the molecular level

PLANT BREEDING: It is the technique involving crossing plants to produce varieties with particular characteristics (traits) which are carried in the genes of the plants and passed on to future generations.

RECOMBINANT DNA: DNA that is formed by combining DNA from two different sources. Humans direct formation of recombinant DNA through selective breeding and genetic engineering

RECOMBINANT DNA (rDNA) TECHNOLOGY: The laboratory manipulation of DNA in which DNA, or fragments of DNA from different sources, are cut and recombined using enzymes. This recombinant DNA is then inserted into a living organism. rDNA technology is usually used synonymously with genetic engineering.

TRANSGENIC PLANT: Genetically engineered plant or offspring of genetically engineered plants. Transgenic plants result from the insertion of genetic material from another organism so that the plant will exhibit a desired trait. Recombinant DNA techniques are usually used.

About the Author:

No further information.


Chandra Bhushan on 2009-03-05 21:58:34 wrote,

In my views this article covers full biotech in a concise manner